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We report experimental and numerical observations on the way initially symmetric and 
time-periodic fluid oscillations in baffled channels develop in complexity. Experiments 
are carried out in a spatially periodic baffled channel with a sinusoidal oscillatory flow. 
At modest Reynolds number the observed vortex structure is symmetric and time 
periodic. At higher values the flow progressively becomes three-dimensional, 
asymmetric and aperiodic. A two-dimensional simulation of incompressible Newtonian 
flow is able to follow the flow pattern at modest oscillatory Reynolds number. At 
higher values we report the development of both asymmetry and a period-doubling 
cascade leading to a chaotic flow regime. A bifurcation diagram is constructed that can 
describe the progressive increase in complexity of the flow. 

1. Introduction 
The progressive transition of ordered flows to more complex flow structures is of 

significant academic and technological interest. In many cases the problem is examined 
by increasing the flow rate of a steady flow either in a plane channel or around a 
stationary obstacle. There is however considerable scope to introduce unsteadiness in 
either the fluid motion or movement of the solid boundary. In this paper we are 
concerned with an unsteady fluid motion, specifically a fully periodic oscillation of the 
volumetric flow rate. Many studies have been carried out with oscillations in smooth 
tubes, see for example Park & Baird (1970). In this case the transition from laminar to 
turbulent flow occurs at a high Reynolds number, of order 10000, as a rapid transition. 
In an obstructed geometry however (e.g. Stephanoff, Sobey & Bellhouse 1980; Sobey 
1980; Brunold et al. 1989) the complexity of the flow develops at modest Reynolds 
numbers of order 100. At these modest Reynolds number the flow can be followed 
using numerical simulation as well as by experimental techniques, providing additional 
insight into the developing complexity of the flow. 

These oscillatory flows can be characterized by a Strouhal number (St)  and 
oscillatory Reynolds number (Re): 

St = Q H / U ,  
Re = f?U/v, 

where D is the frequency of oscillation, H is a characteristic dimension, HU is the peak 
volumetric flow and v is the kinematic viscosity of the fluid. 

Sobey (1983) has shown that for laminar oscillatory fiow in wavy-walled channels 
three distinct flow regimes can be identified. 
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(i) For large Strouhal numbers, St > 0.1, the flow field is dominated by viscosity. 
(ii) For low Strouhal numbers, the flow behaves in a quasi-steady manner. Under 

these conditions the velocity field at any time t can be approximated by the velocity 
field obtained under steady flow conditions, for the same geometry and with a 
volumetric flow equal to that at time t in the oscillation cycle. 

(iii) For intermediate Strouhal numbers, non-quasi-steady behaviour is observed. In 
this regime a sequence of vortex formation, growth during acceleration, and ejection 
upon flow reversal occurs during each oscillation. This process has been termed ‘vortex 
mixing ’ . 

Oscillatory flow in a wavy-walled channel has been studied using both numerical 
simulation and experimental flow visualization by Sobey (1980, 1983) and Stephanoff 
et al. (1980). In general the observed flows were symmetric about the channel 
centreline, periodic and exhibited space-time symmetry : 

where T is the periodic of the oscillation. Ralph (1986) has studied oscillatory flow in 
a wavy-walled tube and found similar regimes to those described above for a wavy- 
walled channel. Ralph (1986) also observed that in a narrow band of St between 
regimes (i) and (iii) the flow exhibited increased complexity with greater vortex 
interaction. In particular he observed that under some conditions (0.02 < St < 0.05) 
the space-time symmetry of the flow was broken. Under these conditions the flows 
were observed to be periodic over one or more complete oscillation cycles, though in 
one case the flow was apparently aperiodic. 

Nishimura et al. (1991) have also observed a breaking of the space-time symmetry 
for oscillatory flow in a wavy-walled channel for 0.02 < St < 0.0284 and for Re > 200. 
The numerical simulations of Nishimura et al. (1991) suggested that these flows 
which exhibited this space-time asymmetry were also no longer spatially periodic 
in the x-direction over one cycle of the geometry. However, the spatial asymmetry 
observed was essentially a numerical error and its true cause was not established. 

From a dynamical systems viewpoint oscillatory flow in an obstructed geometry 
might be considered to be analogous to a forced, damped nonlinear oscillator, with 
storage (kinetic energy) and loss (viscous dissipation) mechanisms. Although the 
system in this case does not exhibit a natural oscillation in the absence of oscillatory 
forcing, a natural oscillation can be observed with a steady flow (Roberts 1994). The 
transition from space-time symmetry to Space-time asymmetry and subsequent 
higher-periodicity regimes may be considered to be a consequence of a bifurcation of 
this forced nonlinear dynamical system. Forced nonlinear oscillators such as the 
Duffing oscillator are known to show period doubling which leads to chaotic behaviour 
(e.g. Thompson & Stewart 1986). Analysis of the period-doubling behaviour of 
oscillatory flow from a dynamical systems perspective may provide further insight into 
these flow regimes. 

Sobey (1985) has observed asymmetric (with respect to the channel centreline) flows 
for oscillatory flow in a symmetric sudden expansion. The asymmetry was observed to 
occur at oscillatory Reynolds numbers of order 100 and was in the form of a large- 
amplitude wave with successive counter-rotating vortices. A similar wave has been 
observed for channel flows with a moving indentation (Ralph & Pedley 1988). 
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Asymmetric oscillatory flows in periodically obstructed geometries have been observed 
experimentally in baffled tubes (Dickens, Mackley & Williams 1989; Hewgill et al. 
1993) but have not been studied in detail. 

The transitions in periodicity and symmetry described above merit more detailed 
attention in order to improve the understanding of the development of flow complexity. 

The successive vortex ejection process that can be obtained in the non-quasi-steady 
regime also has engineering significance for the enhancement of mixing and transport 
processes. Bellhouse et al. (1 973) reported the success of a membrane oxygenator using 
oscillatory flow across a furrowed membrane which indicated good surface mass 
transport under laminar flow conditions. More recently oscillatory flow in a baffled 
tube has been shown to provide a favourable plug-flow-like residence time distribution 
(Dickens et a / .  1989), as well as enhanced heat transfer (Mackley, Tweddle & Wyatt 
1990) and gasAiquid mass transfer rates (Hewgill ef a/. 1993). 

The baffled tube geometry studied experimentally by Dickens et al. (1989) indicated 
that an amplitude of oscillation (centre to peak) of only 1 mm in a 25 mm diameter 
tube gives minimum dispersion. This corresponds to St = 2.0, which is an order of 
magnitude larger than the limiting St for vortex mixing determined by Sobey (1983) 
and Ralph (1 986). Flow visualization photographs under these conditions (Dickens et 
al. 1989) indicate that vortex mixing is still occurring. This apparent contradiction is 
explained by considering that the sharp-edged baffles used by Dickens et al. (1989) 
force the flow to separate, ensuring that vortex mixing will occur at  much higher 
Strouhal numbers than for the relatively smooth geometries of Sobey (1980, 1983) and 
Ralph (1986). Howes (1988) has studied oscillatory flow in a baffled tube geometry 
using both numerical simulation and experimental flow visualization. These results 
confirm that for this geometry vortex mixing is observed for Strouhal numbers up to 
St - 4. Howes (1988) also observed that under some conditions, for Strouhal numbers 
in the range 0.25-0.5, the space-time symmetry of the flow was broken. 

This paper aims to study the developing complexity of oscillatory flow in a baffled 
rectangular channel. The observed periodicity behaviour and the transition to 
asymmetric flow are addressed using two-dimensional numerical simulation and flow 
visualization. The transition to three-dimensional flow is also studied using 
experimental flow visualisation. This geometry is suitable for the study of period- 
doubling behaviour over a range of Strouhal numbers. Furthermore, the transition 
from symmetric to asymmetric flow can be studied using a simple two-dimensional 
numerical simulation. 

The paper is divided into six sections. In $ 2  the theoretical equations and numerical 
techniques are described. A brief description of the experimental flow visualization 
techniques is presented in $ 3 .  The observed flow patterns are described in $4. Section 
5 discusses the influence of the numerical parameters on some of the features described 
in 64. The final section is a concluding discussion of the results described in the paper. 

2. Theoretical equations and numerical techniques 
The geometry studied is a periodically baffled channel as shown in figure 1. For 

simplicity a single set of geometric parameters is used, with a baffle height and spacing 
of B = H / 4  and L = 3 H / 2  respectively. The flow is assumed to be two-dimensional in 
x and y ,  and periodic in x. 

The flow modelling scheme used is based on the work of Sobey (1980) for furrowed 
channels and Howes (1988) for ducted tubes. The model has been used by Howes, 
Mackley & Roberts (1991) and Roberts (1994) and is described in detail by Roberts 
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FIGURE 1. The baffled channel geometry showing the rectangular coordinate system. 
Geometric parameters are B = H/4 and L = 1.5H. 

(1992). The numerical scheme is in the form of a vorticity-streamfunction finite- 
difference solver for an incompressible Newtonian fluid. The definition of a 
streamfunction restricts the model to two spatial dimensions. This approach has been 
used by Howes (1988) to study axisymmetric tube flow, while the results presented in 
this paper are two-dimensional channel flow, allowing the relaxation of the centreline 
symmetry constraint. 

In the equations below, length has been made dimensionless with channel height H,  
velocities with peak mean oscillatory velocity 2xSZx,, and time with 1/9, where SZ is the 
frequency of oscillation (in Hz) and x, is the centre-to-peak amplitude of oscillation. 
The key equations used are the Poisson-type relationship between w and $ and the 
vorticity transport equation: 

where Re is the oscillatory Reynolds number ( 2 x 0 ~ ~  H/v, where v is the kinematic 
viscosity of the fluid) and St is the Strouhal number (H/27cx,). For the geometry of 
figure 1 and for a sinusoidal oscillatory flow the boundary conditions for these 
equations are as follows: 

(a) no slip at the walls: 

u = u = 0 on all walls and baffles; (6) 

(b) the total volumetric flow rate is equal to the difference in the streamfunction at 
the top and bottom walls : 

$ = 0.5 sin (2xt) on the top wall, (7) 

$ = -0.5 sin (27-4 on the bottom wall. (8) 

The flow is also assumed to be spatially periodic with the flow in each cell identical. 
This assumption provides an additional boundary condition : 

(c) spatial periodicity: 
$z=L = $x=o, (9) 

w x = L  = $x=n. (10) 

This is achieved numerically by substituting forwards and backwards the conditions at 
each end of the cell. Relaxation of this constraint is considered in $ 5 .  

The flow can be forced to be symmetric by solving one half of the domain of interest 
and using a centreline boundary condition : 

w = $ = 0 on the centreline. (1 1) 
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FIGURE 2 .  Schematic diagram of the experimental set-up. The orientation of the (x,y) coordinate 
system is shown in the enlarged cross-section. The set-up shown is for visualization of the flow 
patterns in the (x, y)-plane. For (x, ;)-visualization the camera and illumination were rotated through 
90" about the channel centreline, with the camera above the channel. The frequency and amplitude 
of the oscillation were determined on the personal computer, using the signal from the displacement 
transducer via the A/D converter. The camera shutter was driven from the A/D converter in order 
to take photographs at strategic points in the oscillation cycle. 

Finite-difference versions of (4) and ( 5 )  form the base equations for the numerical 
simulation. The vorticity transport (5) is used to step forward in time and (4) is then 
solved for the streamfunction. Velocities (u, v) are obtained from the definition of the 
streamfunction. Centred differencing is used for accuracy and the explicit leapfrog 
method of Dufort & Frankel (see Roache 1976) is used for the time stepping of the 
vorticity transport equation. The length of the time step is chosen to retain numerical 
stability (based on the convective terms), and is typically 0.0025. 

The finite-difference equations are solved on a regular array of grid points. Except 
where stated explicitly in the text a grid of 42 points in the x-direction (x = 0 to 1.5) 
and 65 points in the y direction ( y  = 0 to 1)  is used. Grid refinement tests indicate that 
this grid size is sufficient to provide accuracy without requiring excessive computation. 
Some details of the effect of grid refinement on observed flow features are discussed 
in 5 5 .  

3. Experimental flow visualization 
A diagram of the experimental apparatus is shown in figure 2. The experimental set- 

up has also been used for studying constant volumetric flow in a baffled channel and 
has been described by Roberts (1994). The test section consisted of a Perspex channel 
with periodically placed stainless steel baffles push fitted into the walls, arranged with 
y as the vertical coordinate. The channel height H was 25 mm and the baffle spacing 
L was 37.5 mm. The aspect ratio of the channel cross-section was 1 : 8, and the channel 
length was 1.3 m (34 baffles). The fluid used was a mixture of methylated spirits and 
water (60 % by volume water, kinematic viscosity 2.535 x 

Flow oscillations were provided using a 50 mm diameter piston driven by an offset 
crank arrangement, electric motor and gearbox. The crank arrangement could provide 

m' s-l at 20 "C). 
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(a )  

1 I 

FIGURE 3(a-r). For caption see facing page. 

peak to peak amplitudes of piston motion of 19.9, 29.9, 44.7 and 59.6 mm. These 
amplitudes correspond to Strouhal numbers in the test section of 1.0, 0.68, 0.453 and 
0.341. The frequency of oscillation was varied between 0.1 and 2.2 Hz corresponding 
to an oscillatory Reynolds number in the range 50 < Re < 750. 

A mercury vapour lamp was used to provide planar illumination (in the x, y-plane) 
through a narrow slit - 3 mm wide at the centreline of the channel. In order to study 
cross-channel motions a horizontal plane of light (in the x,z-plane) close to the 
centreplane ( y  = H/2) of the channel was used. Light scattering was achieved with 
neutrally buoyant polyethylene particles having diameter of order 100 pm. 

The flow patterns were observed using a 35 mm SLR stills camera and motor drive. 
Streakline photographs of the flow were taken with exposure times of between 1/30 
and 1/4 s. In order to minimize entrance effects a cell at the centre of the test section 
was used for the streakline photographs. The position of the piston was monitored 
using a displacement transducer, A/D converter and personal computer. The A/D 
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FIGURE 3. A sequence of observed flow patterns in the (.y.j.)-plane for one oscillation cycle. The right- 
hand figures show the experimental streakline photographs taken using a plane of light in the centre 
of the channel in the (.u.y)-plane with an exposure time of 1/8 s. The left-hand figures show 
instantaneous plots of streamlines (constant streamfunction I$ at intervais of 0.05) obtained using a 
two-dimensional numerical simulation. The Reynolds number RP = U H / v  and Strouhal number 
St = U H j Q  based on the peak mean velocity c' and the channel height H were 60 and 0.68 
respectively. (a)  t = t,, (an integer), ( h )  t = t,,+0.2, (c) t = t,,+0.4, ( d )  t = t,,+0.6, ( e )  t = t,,+0.8, and 
(f) t = t,, + I .O. 
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converter was used to drive the camera so that streakline photographs could be taken 
at strategic points in the oscillation cycle, with an accuracy of around k 2" (i.e. f 0.6 O h  

of the oscillation cycle time). 

4. Observed flow patterns 
Flow patterns from the numerical simulation are depicted using contour plots of the 

instantaneous streamfunction. Streakline photographs with a plane of light through 
the channel in the (x, y)-plane are compared with the numerically generated streamlines. 
Streakline photographs taken from above the channel with a plane of light (in the x, 
z-plane) close to the centreplane are used to establish the three-dimensional nature of 
the flow. Using this approach it is possible to identify the nature of the transition to 
three-dimensional flow. The regime under which the flow patterns are dominantly two- 
dimensional can be established for direct comparison with the two-dimensional 
simulation. 

4.1. Experimental observations 
Figure 3 is a sequence of streakline photographs showing motions in the (x,y)-plane 
using a vertical plane of light for oscillatory flow at Re = 60, St = 0.68. Also shown are 
plots of the numerically generated instantaneous streamlines for the equivalent time 
sequence. The flows show good agreement with the size and location of the eddies 
predicted by the simulation. The flow patterns are qualitatively similar to the flow 
patterns reported by Sobey (1980) for wavy-walled channels and Ralph (1986) for 
wavy-walled tubes. The sequence of vortex formation during acceleration, non-quasi- 
steady growth during deceleration and ejection on flow reversal is clearly evident. The 
Strouhal number is however considerably higher than the regimes studied in earlier 
works. As the flow is forced to separate by the sharp-edged baffle the vortex mixing 
behaviour can still be observed at these high Strouhal numbers. The flow patterns in 
figure 3 indicate that the flow is fully periodic over one oscillation. This is clear from 
comparison of figures 3(a) and 3 0 .  Further observations of the flow at successive 
flow reversals indicate that the flow exhibits space-time symmetry in this regime. 

Figure 3 is typical of the flow patterns observed for Reynolds numbers Re < 100. In 
this regime good agreement between the experimental observations and the numerical 
simulation is observed for all Strouhal numbers studied. The flows are symmetric with 
respect to the channel centreline and also exhibit space-time symmetry. The strong pair 
of eddies evident at flow reversal (figure 3a) is observed to grow in strength and 
decrease in size with increasing Reynolds number. The effect of decreasing the Strouhal 
number is equivalent to increasing the displacement amplitude (x,), and for a constant 
oscillatory Reynolds number the frequency of oscillation Q will decrease. With 
decreasing Strouhal number the pair of eddies formed in the previous half-cycle of the 
oscillation increase in size (due to the increase in x,) and decrease slightly in strength 
(due to the decrease in 0). Flow patterns at a range of Reynolds number and Strouhal 
number in this regime have been published in a separate paper (Roberts & Mackley 
1995). 

4.1.1. Transition to three-dimensional f low 

Experimental observations indicate that the flow becomes three-dimensional at an 
oscillatory Reynolds number of order 100 for all Strouhal numbers studied. Figure 4 
shows the streakline pattern observed from above the channel with a horizontal plane 
of light (in the x,z-plane) close to the centreplane, for Re = 60, St = 0.453, at flow 
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FIGURE 4. Streakline photograph showing a dominantly two-dimensional flow regime. The 
photograph was taken from above the channel a t  the point of flow reversal ( I  = an integer) using a 
plane of light in the (.x, z)-plane just above the channel centreplane. with an exposure time of 1/4 s. 
The location of the baffles and the location of the channel centreline are marked on the figure. Re and 
St were 60 and 0.453 respectively. 

reversal ( t  = an integer). Streaks associated with the eddy formed in the upper part of 
the channel during the last half-cycle are evident. Very little motion across the channel 
(in the z-direction) is apparent and the flow is dominantly two-dimensional. Figure 5 
shows the same streakline pattern observed for a flow with Re = 130, St = 0.453, at 
two successive flow reversals. Structured cross-channel motions are clearly evident. A 
sequence of pairs of counter-rotating eddies is apparent and the flow is periodic 
through the depth of the channel. At the second flow reversal the flow is the mirror 
image, but with the eddies shifted across the channel. After one cycle (i.e. t = to + 1 .O, 
not shown) the flow is identical to figure 5(a) ,  indicating that although the flow is three- 
dimensional it is fully repeating over one cycle. It is clear from figure 5(b) that the flow 
is not space-time symmetric in the sense of ( 3 ) .  However the flow patterns suggest that 
the flow may have a modified form of space-time symmetry, with 

where W is the wavelength of the instability in the z-direction. 
Figure 6 shows the streakline pattern observed from above the channel for a flow 

with Re = 300, St  = 0.453 at flow reversal ( t  = an integer +0.5). The sequence of eddy 
pairs is no longer evident and the flow appears disordered with a range of eddy sizes 
and a chaotic three-dimensional structure. 

This sequence of developing three-dimensional motion is observed for all values of 
Strouhal number studied, In all cases the flows appears to be two-dimensional for 
oscillatory Reynolds numbers below -v 100. Figure 5 and further observations of the 
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FIGURE 5. Streakline photographs showing the formation of a structured three-dimensional flow. The 
photographs were taken at two successive flow reversals using a plane of light in the (x, 2)-plane just 
above the channel centreplane, with an exposure time of 1/8 s. The position of the baffles and the 
channel centreline are as shown in figure 4. Re and St were 130 and 0.453 respectively. (a) t = to (an 
integer) and (b) t = t o  + 0.5. 

full channel width indicate that the sequence of eddies is apparently uniform across the 
channel. This would suggest that the transition to three-dimensional flow is due to a 
flow instability rather than the finite depth of the channel. 

The size of the spanwise eddies observed in these structured flows decreases with 
decreasing Strouhal number. Table 1 shows the wavelength ( W )  estimated from 
the flow visualization photographs for the range of Strouhal number studied, with 
Re = 130. 
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FIGLJRE 6. Streakline photograph showing a disordered three-dimensional flow. The photograph was 
taken at the point of flow reversal ( t  = an integer+O.S) using a plane of light in the (,x,z)-plane just 
above the channel centreplane, with an exposure time of 1/15 s. The position of the baffles and the 
channel centreline are shown in figure 4. Re and St were 300 and 0.4.53 respectively. 

St W I L  
I .0 2.5 
0.68 1.3 
0.453 1.1  
0.341 I .o 

TABLF. 1 ,  The spanwise wavelength ( W )  of the three-dimensional instability for Re = 130 

The three-dimensional flow structure apparent in figure 5 is similar to that observed 
by Nishimura er a/. (1991) for oscillatory flow in wavy-walled channels. Careful 
observation of the flow in adjacent cells suggests that there is a phase shift of 180" in 
the cross-channel eddy structure between adjacent cells. This corresponds to the 'type 
A '  instability observed by Nishimura et a / .  (1991) at higher Strouhal numbers. 
Although the magnitude of the Strouhal number studied here is considerably larger 
than that of Nishimura et a / .  (1991), the wavelengths shown in table 1 are of the same 
order of magnitude as the wavelengths observed by Nishimura e f  al. (1991) for the 
'type A '  instability: W / L  = 0.5-1.2. However the trend of increasing wavelength with 
increasing Strouhal number is opposite to that observed by Nishimura et al. (1991). 

Figure 7 shows a streakline photograph in the (.u.y)-plane at flow reversal, for the 
same flow conditions as for figure 5 (Re = 130, St = 0.453). Crossed streaklines due to 
the finite thickness of the plane of light clearly indicate that the flow is three- 
dimensional, in agreement with figure 5.  Some slight asymmetry is apparent in the flow 
though we believe this is caused by asymmetric imperfections of the geometry rather 
than a symmetry-breaking bifurcation. In general. oscillatory flow at  this Reynolds 
number was found to be symmetric in the (x,y)-plane about the channel centreline. 

Observations at successive flow reversals indicate that the space-time symmetry of 
the flow has been broken. Because of the three-dimensional structure however, the 
observed flow pattern is a function of the location of the plane of light (i.e. the z- 
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FIGURE 7. A streakline photograph showing the flow pattern in the (x, y)-plane for the flow conditions 
of figure 5. The presence of crossed streaklines (an example is indicated with an arrow on the figure) 
indicate that the flow is three-dimensional. The photograph was taken using a plane of light in the 
centre of the channel in the (x,y)-plane with an exposure time of 1/15 s. Re and St were 130 and 0.453 
respectively. 

coordinate). At some locations flows which appear to be space-time symmetric can be 
observed. However the (x,z) flow patterns (figure 5 )  clearly show that the three- 
dimensional flow is no longer space-time symmetric. This behaviour is similar to the 
experimental space-time asymmetry observed by Nishimura et al. (199 1) for wavy- 
walled channels and is in essence a three-dimensional structure as opposed to a two- 
dimensional breaking of the space-time symmetry. 

4.1.2. Asymmetry 
Asymmetry in the (x,y)-plane is observed to develop at an oscillatory Reynolds 

number of between 150 and 200. Figure 8 shows a sequence of streakline photographs 
in the (x,y)-plane at three successive flow reversals for Re = 250, St = 1.0. A large 
dominating asymmetric eddy is clearly evident at each flow reversal. The asymmetric 
flow patterns are observed to be qualitatively similar at all Strouhal numbers studied. 
Video observations show that although these flows appear periodic over a single cycle, 
there is a tendency for the flow to wander, so that after 10 cycles or more a different 
flow pattern may be observed. Thus the level of asymmetry in a flow can vary 
considerably, from a highly asymmetric flow (as in figure 8) to a flow that is nearly 
symmetric. 

During each oscillation the dominating eddy is observed to drive the mainstream of 
the flow onto opposite walls during each half-cycle of the flow. This is most clearly 
evident at higher oscillatory Reynolds numbers. Figure 9 shows streakline photographs 
in the (x,y)-plane at two successive flow reversals for Re = 750, St = 0.341. The 
asymmetric motion in this regime is observed to be remarkably stable over a number 
of cycles, despite the overall complexity of the flow. Streakline photographs taken at 
successive periods indicate that the large-scale structures are highly periodic. 
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FIGURE 8. A sequence of streakline photographs showing the typical structure of an asymmetric flow. 
The photographs were taken at  three successive flow reversals using a plane of light in the centre of 
the channel in the (.v.y)-plane with an exposure time of 1/15 s. RP and St were 250 and 1.0 
respectively. ( a )  t = t,, (an integer), ( h )  t = r,,+0.5 and (c , )  f = r,,+ 1.0. 
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(a> 

FIGURE 9. A sequence of streakline photographs showing the flow structure at a relatively large 
Reynolds number. The photographs were taken at two successive flow reversals using a plane of light 
in the centre of the channel in the (x,y)-plane with an exposure time of 1/30 s. Re and St were 250 
and 1.0 respectively. (a) t = to (an integer) and (b) t = to+0.5. 

4.2. Transitions observed using the numerical simulation 
The experimental observations indicate that the flow becomes three-dimensional at a 
relatively low oscillatory Reynolds number and direct comparison with the simulation 
is no longer possible. However, a number of interesting features observed using the 
numerical simulation do follow the qualitative experimental behaviour and merit more 
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FIGURE 10. The development of asymmetry. The flow was modelled using a two-dimensional 
numerical simulation and the level of asymmetry monitored using the parameter A, defined in (13). 
The initial value of h is associated with numerically generated truncation errors. The flow is unstable 
to asymmetric perturbation and there is a linear phase of growth ( t  = 0 to 50). The flow reaches a fully 
developed saturated asymmetric state for t > 70. Re and St were 160 and 1.0 respectively. 

detailed attention. It is also possible that the two-dimensional stability behaviour plays 
an important role in the transitions observed in the full three-dimensional flow. In 
plane Poiseuille flow for example, the two-dimensional instability (Tollmien- 
Schlichting waves), which occurs at a relatively large Reynolds number, is thought to 
play a part in the transition to three-dimensional flow which is observed experimentally 
at a lower Reynolds number (Orszag & Kells 1980). Furthermore it is possible that the 
regimes of two-dimensional flows may be related to oscillatory flows in similar 
geometries, for example the wavy-walled tube. The development of asymmetry and 
period-doubling behaviour are therefore explored in detail using the numerical 
simulation. 

4.2.1. Asymmetry 
If the centreline symmetry constraint is relaxed asymmetric perturbations can grow 

and lead to asymmetric flows at long times. The level of asymmetry can be quantified 
using a parameter h - the mean absolute value of the cross-channel velocity on the 
centreline (v,) : 

h = [ y d x .  

This parameter has been used by Roberts (1994) to study the transition to asymmetric 
flow for constant volumetric flow within a baffled channel. 

The flow at St = 1 .O is observed to become unstable to asymmetric perturbations at 
Re = 93. Figure 10 shows the behaviour of h for Re = 160, St = 1.0. At t = 0 h is of 
order corresponding to the size of truncation errors in the data. Initially there 
is a linear phase of exponential growth, before nonlinear effects become significant 
after around 50 oscillation cycles. After 65 cycles the flow reaches a saturated 
asymmetric state. Figure 11 shows a sequence of instantaneous streamline plots 
through one cycle of the fully developed flow. The asymmetry is in the form of a 
dominating eddy which drives the mainstream of the flow onto opposite walls during 
each half-cycle of the flow. Two eddies are formed during each half-cycle, though one 
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FIGURE 11. A time sequence of plots of instantaneous streamlines in the (x,y)-plane for a fully 
developed, asymmetric sinusoidal oscillatory flow. A two-dimensional numerial simulation was used 
to obtain the streamfunction distribution. Re and St were 160 and 1.0 respectively. Streamfunction 
@ is plotted at intervals of 0.05. The flow patterns should be compared with the streakline 
photographs of figure 8, which show the form of asymmetry which is observed experimentally. 
(a) t = to (an integer), (b)  t = t0+0.25, (c) t = to+0.5, ( d )  t = t0+0.75, and (e) t = to+ 1.0. 

of these merges with the dominating eddy before the point of flow reversal. The 
dominating eddy survives indefinitely, driven by the asymmetric flow during each half- 
cycle of the oscillation. 

The asymmetric flow patterns observed using the numerical simulation (figure 11) 
are very similar to those observed experimentally (figure 8). This is in spite of the fact 
that the experimental flow is three-dimensional and is apparently aperiodic. This 
agreement in the form of the asymmetry observed in the two cases suggests that the 
mechanism for transition to asymmetry observed experimentally is associated with the 
two-dimensional instability, identified with the numerical simulation. 

This bifurcation from a symmetric to an asymmetric flow is a pitchfork bifurcation. 
The space-time symmetry of the flow is broken, and the dominating eddy may be either 
clockwise or anticlockwise. 

At higher oscillatory Reynolds number similar asymmetric flows are observed, with 
the size and strength of the dominating eddy increasing. The same trends are observed 
for all values of Strouhal number studied. The Strouhal number influences the shape 
of the dominating eddy, but the same form of asymmetric flow patterns is observed in 
all cases. Plots of instantaneous streamlines for a range of Strouhal number have been 
published in a separate paper (Roberts & Mackley 1995). The critical oscillatory 
Reynolds number for asymmetry increases with decreasing Strouhal number. By 
observing the eigenvalue for the instability as it becomes positive it is possible to 
determine the critical Reynolds number (Re,) at each value of the Strouhal number. 
Table 2 shows the value of the critical oscillatory Reynolds number at the four values 
of Strouhal number studied. 
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St Re, 
1 .0 93 
0.68 105 
0.453 135 
0.341 156 

TABLE 2. Critical oscillatory Reynolds number for asymmetry 

Although the experimental flows become three dimensional before they become 
asymmetric, the form of the asymmetry observed is qualitatively similar to the 
observations from the numerical simulation. Comparison of figure 11 with figure 8 
shows a remarkable similarity in the flow patterns observed. 

4.2.2. Periodicity behaviour 
In order to establish if the flow has reached a fully developed state two periodicity 

numbers are defined. These can be used to establish the frequency of any time-periodic 
flow regime. 

c W X %  y. t - h, .t/, t-.vJ 

c l k , Y , t l  

c I ~ z , y , t + ~ L - z , y , t - 0 . 5 1  

c I A , Y . t l  

X N  = i , j  x loo%,  (14) 
i , j  

x loo%, (15) 

where i , j  represents a grid point on the finite-difference grid. xN is a measure of the 
percentage difference between the flow at time f and the flow N cycles earlier. Thus if 
xN + 0 then the flow is fully repeating over N cycles. For the flows studied in this paper 
the behaviour of xn: is observed for N = 1 to 16. xO,s has been used to indicate whether 
the flow is space-time symmetric : if xo,5 + 0 then the flow is spacetime symmetric. 
This is similar to the parameter used by Ralph (1986) to study the breaking of 
space-time symmetry. 

Figure 12 shows the behaviour of x1 for the developing asymmetric flow with 
Re = 160, St = 1.0. Initially x1 falls to a value of below 1 %, before rising again to a 
value of around 50 o/o after 63 cycles. For t > 65, x1 tends towards zero indicating that 
the flow reaches a fully developed state which is periodic over one cycle. This is in 
agreement with the observed fully developed flow patterns shown in figure 11. Figure 
10 indicates that the asymmetry of this flow develops during the first 54 oscillation 
cycles. Initially the flow is symmetric and the early decay in x1 corresponds to the 
periodicity of the symmetric flow. Once the asymmetry has developed the flow shows 
a complex transitional behaviour for 54 < f < 65, evident in figures 10 and 12. This 
may be a transient chaotic behaviour, before the flow develops into a fully periodic 
flow. For higher oscillatory Reynolds numbers (Re  > 300) the flow is not observed to 
reach a periodic state after 100 cycles. 

The most interesting features relating to the periodicity of oscillatory flows are 
observed using the numerical simulation with the constrained symmetric boundary 
condition (1 1). 

The development of the flow has been followed with increasing oscillatory Reynolds 
number for constrained symmetric flow at the four values of Strouhal number studied 

i. j 
x 0 . 5  = 

i , j  
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FIGURE 12. The periodicity behaviour for a developing asymmetric flow. The periodicity parameter 
x1 is defined in (14). The flow is followed using a two-dimensional numerical simulation; it is started 
from rest and the developing periodicity behaviour is associated with the symmetric flow. After 
around 45 cycles the asymmetric perturbations become large (see figure 10) and the periodicity 
behaviour changes. After long times, t > 70 cycles, x1 decays rapidly indicating that the fully 
developed asymmetric flow is periodic over one oscillation cycle. The flow conditions are identical to 
those of figure 10 (Re = 160, St = 1.0) and the fully developed flow patterns are shown in figure 11. 
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FIGURE 13. The developing periodicity for St = 1. The periodicity parameters x,, and ,yo,5 are defined 
by (14) and (15). If x N + O  the flow is periodic over N cycles, while if xo,5+0 the flow exhibits 
space-time symmetry. The flows were followed using a two-dimensional simulation and were 
constrained to be symmetric. Clearly for Re = 130, xo.s+O and the flow is space-time symmetric. 
Re = 300 and 350, xz --f 0 and x4 + 0, indicating periodicity over two and four cycles respectively. 

in this paper. The periodicity parameters xo,5 and x N  have been used to characterize 
this development. 

Figure 13 shows the behaviour of periodicity parameters for a range of oscillatory 
Reynolds numbers with St = 1 .O. For oscillatory Reynolds numbers of 160 and below 
the asymptotic flow is observed to be space-time symmetric and fully periodic over 
each oscillation cycle. In figure 13 the space-time symmetry is clearly indicated for 
Re = 130 by the rapid decay of xo,5.  At an oscillatory Reynolds number between 160 
and 200 the flow is observed to pass through a transition from a flow fully repeating over 
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FIGURE 14. A time sequence of plots of instantaneous streamlines in the (x,y)-plane for a fully 
developed, symmetric sinusoidal oscillatory flow in a baffled channel. A two-dimensional numerical 
simulation was used to obtain the streamfunction distribution, with the flow constrained to be 
symmetric. Re and St were 300 and 1.0 respectively. Streamfunction $ is plotted at  intervals of 
0.05. Comparison of (a)  and ( e )  clearly shows that the flow is periodic over two oscillation cycles. 
(u )  t = to (an integer), (h)  f = t , ,+O. j .  ( c )  t = t,,+ 1.0, (d)  t = r,, + 1.5. and (e )  f = t,+2.0. 

one cycle to a flow fully repeating over two cycles. The behaviour of x1 and xz is shown 
in figure 13 for Re = 300. ,yl approaches a positive asymptotic value while x2 
decays rapidly, indicating that the flow is periodic over two oscillation cycles. Further 
transitions were observed to flows periodic over four and eight cycles, at oscillatory 
Reynolds numbers of 300-350 and 370-380 respectively. The behaviour of x2  and x4 
is shown in figure 13 for Re = 350. In this case ,y2 approaches a positive asymptotic 
value while ,y4 decays rapidly, indicating that the flow is periodic over four oscillation 
cycles 

Figure 14 shows the instantaneous streamlines at five successive flow reversals for 
Re = 300, St = 1.0 where the flow is periodic over two cycles. This figure suggests that 
the observed transition is a pitchfork bifurcation as the flows at each flow reversal 
with f = an integer are very different from those at the opposite flow reversal, 
with t = an integer+0.5. Using a different starting boundary condition for the wall 
streamfunction, a different fully developed flow can be obtained. Replacing (7) and 
(8) with 

for t < 0.5 $ = 0 on walls and baffles, 

for t > 0.5 (CI = fisin(2nr) on walls and baffles, (17) 

is equivalent to holding the flow stationary for the first half-cycle. The fully developed 
flow observed using this new starting boundary condition is observed to be the mirror 
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FIGURE 15. As figure 14 but for Re and St were 160 and 0.68 respectively. The space-time symmetry 
of the flow is broken, but the flow is periodic over one oscillation cycle. (a) t = to (an integer), 
(b) t = to+0.5, and (c) t = to+ 1.0. 

image of the flow shown in figure 14, with the time advanced one half-cycle. Thus two 
different asymptotic solutions can be obtained, indicating that the observed transition 
is from a one-cycle repeating flow to two different flows repeating over two cycles (i.e. 
a period-doubling pitchfork bifurcation). 

With St = 0.68 the first periodicity transition observed with increasing oscillatory 
Reynolds number is a breaking of the space-time symmetry of the flow. This transition 
occurs at Re = 120-125. For Re = 160 for example, after a development time of thirty 
cycles, x1 falls rapidly, indicating that the fully developed flow is periodic over one 
cycle. xo.5 reaches a positive asymptotic value of 65 %, indicating that the space-time 
symmetry of the flow has been broken. Figure 15 shows the flow patterns observed for 
this fully developed flow at three successive flow reversals. The flow patterns confirm 
that the space-time symmetry of the flow has been broken. 

This bifurcation to space-time asymmetric flow is a pitchfork bifurcation. At higher 
oscillatory Reynolds numbers with St = 0.68 a rapid series of period-doubling 
bifurcations is observed. Transitions to two-, four-, eight- and sixteen-cycle periodic 
flows are observed at oscillatory Reynolds numbers of 160-180, 190-195, 195-200 and 
20&200.25 respectively. 

The sequence of bifurcations described above for St = 1.0 and 0.68 is suggestive of 
a Feigenbaum-like period-doubling cascade that will lead to a chaotic flow regime, 
where the flow is aperiodic. A universal feature of period-doubling cascades is that the 
ratio ai: 

(where Re,, is the critical oscillatory Reynolds number for the ith period-doubling 
bifurcation) tends towards a constant value 6 = 4.67 . . . as i tends to 00 (see Thompson 
& Stewart 1986, for example). For the three period-doubling bifurcations observed 
with St = 1.0, 6, - 4. For St = 0.68, we can estimate 6, z 4.5 and 6, z 4.65 from the 
first four period-doubling bifurcations (1 to 2, 2 to 4 ,4  to 8 and 8 to 16). These results 
confirm that the bifurcations observed are indicative of a period-doubling cascade. 
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FIGURE 16. Comparison of the trace of the velocity u at  a point on the centreline for a perturbed and 
unperturbed fully developed flow. The flows were followed using a two-dimensional numerical 
simulation, with the flow constrained to be symmetric. It is clear that the two flows are divergent. The 
fully developed flow does not appear to be periodic, but some of the oscillating structures of the trace 
are observed to reappear after a number of oscillatior: o d e s .  Re and St were 230 and 0.68 
respectively. 

From (18) the cascade should be complete at an oscillatory Reynolds number of - 390 for St = 1.0 and of - 201 for St = 0.68. For higher oscillatory Reynolds 
numbers chaotic flows should be observed For both St = 1.0 and St = 0.68 flows no 
evidence of periodicity was observed for oscillatory Reynolds numbers greater than 
400 and 202 respectively. For these aperiodic flows the velocity at a point on the 
centreline between the two baffles was observed for many hundreds of oscillations with 
no evidence of a repeating cycle. 

In order to demonstrate that these flows are chaotic it is necessary to show that: (a) 
the flow is sensitive to initial conditions (i.e. there is a positive Liapunov exponent); 
and (h)  the fully developed flow is associated with an attractor (specifically a strange 
attractor). Sensitivity to initial conditions has been demonstrated by introducing a 
small perturbation to the flow and comparing the subsequent development of the 
unperturbed and perturbed flows. If the flow is fully developed and chaotic, these flows 
will diverge at an exponential rate corresponding to the largest Liapunov exponent (see 
Thompson & Stewart 1986, for example). The magnitude of the initial perturbation 
used was approximately three orders of magnitude smaller than the residual error in 
the converged solution at each time step. The perturbation was introduced after 500 
oscillation cycles to ensure that the flow had reached a fully developed state. For 
St = 0.68 the flows were found to diverge for Reynolds numbers of Re > 202. For these 
flow conditions the divergence is exponential, indicating that the flow is sensitive to 
initial conditions and has a positive Liapunov exponent. The rate of divergence was 
found to increase with oscillatory Reynolds number. At long times, of order 100 cycles, 
the flows have become significantly different and there is no longer any exponential 
divergence. 

The Liapunov exponent has been estimated from a time sequence of velocity at a 
point on the centreline using the technique reported by Wolf et al. (1985). Estimates of 
the Liapunov exponent obtained using this technique are in approximate agreement 
with exponential rate of divergence of the perturbed and unperturbed flows. For 
example for Re = 280, St = 0.68 Liapunov exponents of 0.35-0.45 (from the technique 
of Wolf et al. 1985) and 0.39 (from the rate of divergence) are obtained. 

Figure 16 shows a trace of the velocity u at a point on the centreline for the 
unperturbed and perturbed flows with Re = 230, St = 0.68. The divergence of the flows 
is clearly evident. It is also evident that although the flow is aperiodic there is a pattern 
in the trace, in that structures reappear as the flow progresses. This pattern is 
associated with the structure of the strange attractor for the chaotic flow. The well- 
known technique of phase-space reconstruction (Packard et al. 1980; Thompson & 
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FIGURE 17. A Poincart map of the trajectory of the velocity u at a point on the centreline in delay 
coordinates. The flows were followed using a two-dimensional numerical simulation, with the flow 
constrained to be symmetric; they were started from rest and the points associated with the first nine 
oscillation cycles are labelled. The structure of the asymptotic attractor is evident from the figure. 
After only a few oscillation cycles the trajectory rapidly approaches the asymptotic attractor. Re and 
St were 230 and 0.68 respectively. 

Stewart 1986) can be used to illustrate the structure of an attractor from a time series 
of data using delay coordinates. Figure 17 shows a Poincare map of the trajectory of 
the velocity of a point on the centreline in delay coordinates [u(t + 1) versus u(t)] for 
Re = 230, St = 0.68. The figure clearly shows that this flow has an associated attractor. 
The trajectory starts from an initial boundary condition (stationary fluid) which is not 
associated with the attractor. After only a few oscillation cycles the trajectory rapidly 
approaches the asymptotic attractor. 

For St = 0.68 a narrow window of periodic flows occurs at oscillatory Reynolds 
numbers of - 212-216. At Re = 213 x6 decays towards zero indicating that the flow 
is periodic over six cycles, while periodicity numbers for fewer oscillations remain high. 
At Re = 214 and 215, St = 0.68 observation of the velocity at a point on the centreline 
for - 500 cycles indicates that the flow becomes periodic over 12 and 24 cycles 
respectively. This suggests that the flow is going through another sequence of period- 
doubling bifurcations: 6+ 12+24 etc. This type of behaviour with windows of 
periodic flows and period-doubling sequences is well known for dynamical systems 
exhibiting deterministic chaos (e.g. Thompson & Stewart 1986). 

A bifurcation diagram has been constructed for increasing oscillatory Reynolds 
number with St = 0.68, using xo,s as a parameter (figure 18). This diagram illustrates 
the sequence of period-doubling cascade leading to chaotic flow. The periodic window 
observed for Re = 212-216 is also shown. It is likely that there are further periodic 
windows present in the chaotic regions in the bifurcation diagram. 

Similar period-doubling sequences are observed for St = 0.453 and 0.341. For flows 
with periodicity greater than one cycle, up to four pairs of eddies are observed at each 
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FIGURE 18. The bifurcation diagram for symmetric flow for St = 0.68, constructed using a two- 
dimensional numerical simulation with the flow constrained to be symmetric. The diagram shows 
how the space-time symmetric flow observed at low Reynolds number develops into a chaotic flow 
as the oscillatory Reynolds number increases. Note that the flow is observed experimentally to 
become three-dimensional at an oscillatory Reynolds number of between 100 and 130, and 
asymmetric for Re > 200. 

Re 
1 

10 
40 
80 

130 
200 
300 
400 
500 

St 1.0 

0.511 

0.511 
0.511 

0.512 
0.512 
212.5 
213.25 
~ 1 3 . 3  

0.68 

0.51 I 
0.51 1 
0.51 1 
0.5j2 

412.5 
ccj2.6 
~ 1 2 . 6  
~ 1 2 . 8  

1 12 

0.453 

0.511 
0.511 
0.511 
0.51 1 
0.512 
111.5 
x12.1 
m312.2 
~012.4 

0.341 

0.511 

0.511 
0.511 
0.511 
111.5 
211.75 
212 

0.5/1 

TABLE 3. Periodicityjnumber of pairs of eddies at flow reversal for constrained symmetric flow. A 
periodicity of a indicates that no periodicity was observed and the flow is chaotic 

flow reversal. The strongest pair of eddies is observed to survive for up to two cycles, 
while others are formed, merge or disappear during each cycle. 

For each Strouhal number the periodicity of the flow has been observed at a range 
of oscillatory Reynolds numbers. These results are summarized in table 3 .  Each flow 
is characterized by two numbers : the first is the number of cycles over which the flow 
is fully repeating - if the flow is time symmetric this is given as 0.5; the second number 
is an average number of pairs of eddies in the flow at flow reversal. Increasingly 
complex flows with a larger number of eddies are observed with increasing oscillatory 
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Reynolds number. With decreasing Strouhal number at constant oscillatory Reynolds 
number fewer eddies are observed in each cell. 

5. Grid refinement and numerical convergence 
The period-doubling cascade observed for the symmetric flows is known to occur in 

a wide range of nonlinear systems. A number of grid refinement tests have been 
performed in order to demonstrate that the period doubling is associated with the 
underlying flow equations rather than the numerical scheme. Grid sizes are quoted as 
the number of grid points in the x- and y-directions in one inter-baffle cell. 

Moore, Weiss & Wilkins (1990) have studied the effect of grid refinement on a 
period-doubling transition observed for thermosolutal convection. They used a similar 
Dufort-Frankel leapfrog scheme and showed that when performing grid refinement 
tests for this scheme it is important to keep y = Re StAt/Ax2 constant. With y constant 
the solution should converge with A x - 0  with an error proportional to Ax2. The 
solution should also converge at any given grid size as y+O. A series of tests was 
therefore performed using grids of (a) 32 x 48, (b)  40 x 64, (c) 60 x 96, ( d )  80 x 128 and 
(e) 120 x 192, while keeping y constant for all cases. For grids (a-d) a bifurcation 
diagram was constructed which in each case had the same structure as figure 18. For 
each grid size flows periodic over one, two, four and eight cycles were observed as well 
as chaotic flows. The critical Reynolds number for each transition was found to be a 
weak function of the grid size, so that any given Reynolds number the observed flow 
may depend on the grid size used. 

In order to show that the bifurcation structure is convergent the effect of grid size 
on the critical Reynolds number for the first period-doubling transition has been 
evaluated for St = 0.68. By determining the eigenvalue for the transition as it changes 
from a negative to positive value it is possible to determine the critical Reynolds 
number (Re,) for this transition. Figure 19 shows the effect of grid size on this critical 
Reynolds number for the grids (a-e). The critical Reynolds number is convergent with 
second-order accuracy on grid spacing, as expected. This confirms that this transition 
is associated with the two-dimensional Navier-Stokes equations and not with the 
numerical discretization. 

For each refined grid (b-e) the periodic window and with a flow of period six was 
located for oscillatory Reynolds numbers in the range 210-220. The value of the critical 
Reynolds number for the transition from period-six flow to period-twelve flow was 
determined in each case. The results suggest that the location of the periodic window 
is second-order convergent on grid size, but further simulations with finer grids are 
required to confirm this observation. 

The effect of the time step has been evaluated by reducing the time step at a fixed grid 
size of 40 x 64. This has the effect of reducing y with constant Ax. When the time step 
was reduced from 0.0025 to 0.001 25 the critical Reynolds number for the transition 
from period-one to period-two flow was affected by less than 1 %. A further reduction 
in the time step to 0.000625 gave a change in the critical Reynolds number of less than 
0.02 %. The critical Reynolds number is clearly convergent with y ,  as expected. 

The effect of grid refinement on the transition to asymmetry has also been 
investigated. Figure 20 shows the behaviour of A for a flow with Re = 160, St = 1 .O for 
a range of grid sizes. In all cases the asymptotic flow is asymmetric and periodic over 
one oscillation cycle. The transitional behaviour shows some sensitivity to grid size. 
This is to be expected as the asymmetry develops gradually over some 100 cycles and 
numerical errors will influence this sensitive transition process. This effect is however 
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FIGURE 19. The effect of grid size on critical Reynolds number for a period-doubling bifurcation for 
symmetric Row. Re, is the critical Reynolds number for the first period-doubling bifurcation 
calculated using a two dimensional numerical simulation with the Row constrained to be sym- 
metric, for St = 0.68. N ,  is the number of grid points used in the x-direction, with N J N ,  and 
y = Re St At/Ax2 constant. The figure indicates that Re, is convergent as Ax-+ 0, and further analysis 
of the data indicates second-order convergence. 
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FIGURE 20. The effect of grid size on the development of asymmetry. The Row was started from rest 
and the level of asymmetry h followed using a two-dimensional numerical simulation using a range 
of finite difference grids. The number of grid points used in each case is indicated in the figure. 

relatively small and the instability of the symmetric flow is clearly evident for all grid 
sizes. 

5.1. Spatial periodicity 
The assumption of spatial periodicity for each cell is generally considered to be 
acceptable for this class of flows. Bernardis, Graham & Parker (1981) studied 
oscillatory flow through a single orifice plate and observed that very little vorticity was 
swept back through the orifice when the flow reversed direction. This indicates that the 
flow in each cell is largely independent of adjacent cells. Thus by modelling the flow as 
periodic over one cell, a good approximation of the flow field can be obtained even if 
the flow is observed experimentally to be different in adjacent cells. It is possible to 
relax the periodicity constraint by observing the effect of varying the number of cells 
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FIGURE 21. A time sequence of plots of instantaneous streamlines in the (x,y)-plane for a fully 
developed, symmetric flow. A two-dimensional numerical simulation was used to obtain the 
streamfunction distribution. The flow is constrained to be symmetric and spatially periodic over six 
cells, as depicted. Re and St were 300 and 1 .O respectively. Streamfunction p+ is plotted at intervals 
of 0.1. Comparison with figure 14 indicates that the spatial periodicity assumption has had no effect 
on the fully developed flow. (a) t = to (an integer), and (b) t = to+ 1.0. 

FIGURE 22. A plot of instantaneous streamlines in the (x,y)-plane for a fully developed, asymmetric 
sinusoidal flow at the point of flow reversal ( t  = an integer). A two-dimensional numerical simulation 
was used to obtain the streamfunction distribution, with the spatial periodicity relaxed to twelve cells, 
as depicted. The flow was started from rest with a small perturbation to allow differences in the flow 
in each cell to develop. Re and St were 200 and 1.0 respectively. Streamfunction $ is plotted at 
intervals of 0.1. The flow is periodic over one oscillation cycle, but it is clear from the figure that the 
flow is not spatially periodic over each cell of the geometry. 

modelled on the flow field. Figure 21 shows the fully developed flow patterns for a 
constrained symmetric flow periodic over six cells for Re = 300, St = 1 .O. The flow was 
started from rest as normal, and a small perturbation (with a normalized amplitude of 
order introduced at the first time step to give a very slightly different flow in each 
cell. The converged flow for these conditions was found to be periodic in time over two 
cycles. Comparison with figures 14(a) and 14(c) indicates that the assumption of 
spatial periodicity over one cell does not affect the period-doubling transition. 

The effect of the spatial periodicity assumption on the transition to asymmetric flow 
has also been investigated. Intuitively one might expect that the sense of rotation of the 
dominating eddy observed would be opposite in adjacent cells, as indicated by the 
observations of Sobey (1985). In order to observe the effect of spatial periodicity on the 
asymmetric flows two simulations were carried out with a flow periodic over twelve 
cells. In the first simulation the solution obtained using a flow periodic over one cell was 
used as the starting condition in each of the twelve cells. A small perturbation (with a 
normalized amplitude of order was introduced to give a very slightly different 
flow in each cell. The perturbation was observed to decay exponentially so that the 
converged soiution was identical to the solution assuming periodicity over a single c l l .  
For the second simulation the flow was started from rest, again with a small 
perturbation (with a normalized amplitude of order introduced at the first time 
step to give a very slightly different flow in each cell. After around 100 cycles the flow 
was observed to reach a converged solution, periodic over one oscillation cycle. 
However in this case the flow was not observed to be spatially periodic in each cell. 
Figure 22 shows the instantaneous streamlines observed at flow reversal. In all but one 
of the cells a similar flow pattern is observed, with a dominating eddy. The dominating 
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eddy is rotating counterclockwise in seven cells, clockwise in four cells and in the 
remaining cell the flow is nearly symmetric. Clearly at least two possible converged 
solutions are possible, and its seems likely that there may be many more solutions for 
different spatially periodic boundary conditions. The flow in most of the cells however 
is very similar to the flow obtained assuming spatial periodicity over a single cell. These 
observations suggest that the flow in each cell is only a weak function of the flow in 
adjacent cells. 

6. Discussion and conclusions 
Experimental observations of cross-channel motions indicate that oscillatory flow in 

a baffled channel becomes three-dimensional at an oscillatory Reynolds number of 
order 100 for the range of Strouhal number studied. The cross-channel motion shows 
a periodic sequence of eddies developing in strength before breaking down into an 
unstructured three-dimensional flow at Re - 200. These flow are similar to those 
observed experimentally by Nishimura et ul. (1991) for oscillatory flow in wavy-walled 
channels. Nishimura et (11. (1991 ) suggested that this transition was due to a centrifugal 
(Taylor--Gortler) instability of the line eddy formed at the convex part of the channel 
wall. Honji (1981) observed a similar three-dimensional instability for flow around an 
oscillating cylinder. The wavelength of the three-dimensional instability observed by 
Nishimura et al. (1991) is consistent with that observed by Honji (1981) for a cylinder 
diameter equivalent to the wavelength of the channel wall. Observation of the radius 
of curvature of the streamlines for the flow patterns observed by Nishimura et al. 
(1991) indicate that this cylinder diameter is reasonable. 

Although the wavelengths and form of the flow structure are similar to those 
observed by Nishimura et al. (199 l ) ,  the trend of increasing wavelength with increasing 
Strouhal number is opposite to that observed by both Nishimura et ul. (1991) and 
Hoiiji (198 1). Clearly a three-dimensional perturbation analysis is needed to explain 
these observations. There is considerable scope for further numerical and experimental 
studies of these three-dimensional transitions. 

The transition to asymmetry observed using the numerical simulation shows 
remarkable qualitative agreement with the experimentally observed flow patterns (e.g. 
compare figures 8 and 11). This is in spite of the fact that the experimentally observed 
flow has a complex three-dimensional structure. The critical oscillatory Reynolds 
number for transition to three-dimensional flow is found to be close to that observed 
numerically for the two-dimensional transition to asymmetry. A possible explanation 
is that the growth rate of symtnetric three-dimensional perturbations is much larger 
than the growth rate of the two-dimensional asymmetric instability. Nonlinear effects 
could then damp the growth rate of the asymmetric perturbations and retard the 
transition to asymmetry. The transition to asymmetry may ultimately be associated 
with the two-dimensional instability, and the comparison with the two-dimensional 
simulation is consistent with this hypothesis. This may also explain the ‘intermittent’ 
behaviour observed under some conditions where the level of asymmetry varied 
considerably with time. This effect may be a consequence of the two competing flow 
regimes : three-dimensional symmetric and two-dimensional asymmetric flow. A full 
three-dimensional simulation or stability study is needed to further evaluate these 
transitions. 

Observations reported in this paper indicate that for numerical simulation of 
oscillatory flows, care is needed to ensure that a fully developed state has been 
achieved. In sotne cases it is necessary to follow many hundreds of oscillation cycles 
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before the flow is fully developed. This is in contrast to the published literature where 
oscillations are followed for a development time of order five cycles. It is normal to 
assume that if the observed flow pattern is nearly identical after successive oscillations 
the flow is fully developed. The results reported in this paper clearly show that this 
assumption may not be valid. Very gradual transitions can occur over many oscillation 
cycles, so that the flow pattern after successive oscillations is nearly identical but after 
many oscillation cycles the nature of the flow has altered significantly. The use of 
periodicity numbers to establish the development of the flow has been shown to be a 
more reliable means of establishing whether the flow is fully developed. 

It is natural to assume that the very gradual transitions observed are a consequence 
of accumulating numerical errors. In this case the period-doubling sequence observed 
would be an artefact of the numerical scheme and a strong function of the grid size. 
Grid refinement test indicate that this is not the case and the observed period-doubling 
sequence is therefore associated with the two-dimensional flow equations. 

Experimental observations indicate that the flows studied in this paper become 
three-dimensional and asymmetric before any period-doubling transitions occur. 
However, as the first period-doubling transition can be observed at moderate 
oscillatory Reynolds numbers of order 100-200, it is likely that for some geometries the 
period-doubling transition will occur before the flow becomes three-dimensional. 
Indeed the first stage of a period-doubling sequence, the breaking of the space-time 
symmetry, has been observed experimentally by Ralph (1986). A period-doubling 
cascade leading to a chaotic flow has been studied by Blondeaux & Vittori (1991) for 
oscillatory flow over a single wavy wall. Similar behaviour has also been observed by 
Howes (1988) for oscillatory flow in baffled tubes, although no detailed study was 
carried out. Period-doubling sequences would seem to be an important mechanism for 
the development of flow complexity for these types of forced oscillatory flow in 
obstructed geometries. 

Comparison of the observed flow patterns with those presented by Howes (1988) 
suggests that the toroidal eddies formed in the tube survive for longer than the line 
eddies observed in this paper. As a consequence of this longevity the flows observed by 
Howes (1988) show a higher level of complexity than those presented in this paper at 
equivalent flow conditions. Comparison of the wavy-walled channel flows presented by 
Sobey (1980, 1983) with the wavy-walled tube flows of Ralph (1986) also shows that 
the tubular geometry leads to increased flow complexity. Howes (1988) observed 
experimentally that the flow remained axisymmetrically for oscillatory Reynolds 
number of up to 300. It would seem likely that for some conditions period doubling 
may be observed experimentally for oscillatory flow in baffled or wavy walled tubes. 

The period-doubling cascade is only one of the possible routes for transition to 
chaotic flow. Period-doubling sequences have been observed experimentally for some 
hydrodynamic systems, notably for Rayleigh-BCnard convection (Gollub & Benson 
1980). Transition to a chaotic flow regime following a periodic-quasi-periodic-chaotic 
sequence has been observed for Couette flow by Gollub & Swinney (1975). A period- 
doubling cascade leading to a chaotic flow has been briefly studied by Blondeaux & 
Vittori (1991) for an oscillatory flow past a single wavy wall. For oscillatory flow past 
a cylinder transition to a chaotic regime by the quasi-periodic-phase locking scenario 
has been observed (Blondeaux & Vittori 1993). 

Research into developing flow complexity and the transition to chaotic flow has in 
the past concentrated on three-dimensional flows or flows for which buoyancy effects 
are significant. In this paper, a very wide range of flow phenomena and transitions has 
been observed using a simple two-dimensional simulation for a range of Reynolds 
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number and Strouhal number conditions. The study of obstructed oscillatory flow 
offers the opportunity to study developing flow complexity without the need for 
cumbersome three-dimensional simulation or the introduction of buoyancy effects. 

The bifurcation diagram shown in figure 18 clearly shows the developing complexity 
of the flow. This diagram was constructed from simulation of the fully developed flow 
rather than from theoretical or stability analysis. This approach provides a powerful 
tool for following the developing complexity of oscillatory flows. It is important to note 
that a flow which is chaotic is not necessarily turbulent. In this paper a period-doubling 
transition to chaotic flow has been observed using a laminar two-dimensional 
simulation. 

There is significant potential for further analysis of the transitions described in the 
paper. For example in the chaotic region it may be possible to identify further periodic 
windows. The sequence of periodicity of these windows may correspond to a 
characteristic sequence such as the U-sequence for one-dimensional maps (e.g. 
Thompson & Stewart 1986). It is also possible that the characteristics of the flow (i.e. 
the bifurcation diagram) may be followed using a simple deterministic model with only 
a few degrees of freedom. 

R E F E R E N C E S  

BELLHOUSE, B. J. ,  BELLHOUSE, F. H., CURL, C. M., MACMILLAN, T. l., GUNNING, A. J., SPRATT, 
E. H., MACMURRAY, S. B. & NELEMS, J. M. 1973 A high efficiency membrane oxygenator and 
pulsatile pumping system and its application to animal trials. Trans. Am. Soc. Art$. Int. Organs 
19, 77. 

BERNARDIS, B. DE, GRAHAM, J .  M .  R. & PARKER, K. H. 1981 Oscillatory flow around discs and 
through orifices. J .  Fluid Mech. 102, 279. 

BLONDEAUX, P. & VITTORI, G. 1991 A route to chaos in an oscillatory flow ~ Feigenbaum scenario. 
Phys. Fluids A 3, 2492. 

BLONDEAUX, P. & VITTORI, G. 1993 Quasiperiodicity and phase locking route to chaos in the 2-D 
oscillatory flow around a circular cylinder. Phys. Fluids A 5, 1866. 

BRUNOLD, C. R., HUNNS, J. C. B.. MACKLEY, M. R. & THOMPSON, J. W. 1989 Experimental 
observation on flow patterns and energy losses for oscillatory flow in ducts containing sharp 
edges. Chem. Engng Sci. 44, 1227. 

DICKENS, A. W.. MACKLEY, M. R. & WILLIAMS, H. R. 1989 Experimental residence time distribution 
measurements for unsteady flow in a baffled channel. Chem. Engng Sci. 44, 1471. 

GOLLUB, J .  P. & BENSON, S. H. 1980 Many routes to turbulent convection. J .  Fluid Mech. 100, 449. 
GOLLUB, J. P. & SWINNEY, H. L. 1975 Onset of turbulence in a rotating fluid. Phys. Rec. Lett. 35, 

HZWGILL, M. R., MACKLEY, M. R., PANDIT, A. B. & PANNU, S. S. 1993 Enhancement of gas-liquid 

HONJI, H. 1981 Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 107, 509. 
HOWES, T. 1988 Dispersion and unsteady flow in baffled tubes. PhD thesis, Department of Chemical 

Engineering, University of Cambridge. 
HOWES, T., MACKLEY. M. R. & ROBERTS, E. P. L. 1991 The simulation of chaotic mixing and 

dispersion for periodic flows in baffled channels. Chem. Engng Sci. 46, 1669. 
MACKLEY, M. R.. TWEDDLE, G. M. &WYATT, I .  D. 1990 Experimental heat transfer measurements 

for pulsatile flow in a baffled tube. Chem. Engng Sci. 45, 1237. 
NISHIMURA, T.. MIYASHITA, H., MURAKAMI, S. & KAWAMURA, Y .  1991 Oscillatory flow in a 

symmetric sinusoidal wavy walled channel at intermediate Strouhal numbers. Chem. Engng Sci. 
46, 771. 

MOORE, D. R., WEISS, N. 0. & WILKINS, J. M. 1990 The reliability of numerical experiments: 
transitions to chaos in thermosolutal convection. Nonlinearity 3,  997. 

ORSZAG, S. A. & KELLS, L. C. 1980 The transition to turbulence in plane Poiseuille flow and plane 
Couette flow. J. Fluid Mech. 96, 159. 

927. 

mass transfer using pulsed flow in a baffled tube. Chem. Engng Sci. 48, 799. 



48 

PACKARD, N. H., CRUTCHFIELD, J. P., FARMER, J. D. & SHAW, R. S. 1980 Geometry from a time 
series. Phys. Rev. Lett. 45, 712. 

PARK, J. R. S. & BAIRD, M. H. I. 1970 Transition phenomena in an oscillating manometer. Can. J .  
Chem. Engng 48, 491. 

RALPH, M. E. 1986 Oscillatory flow in wavy walled tubes. J .  Fluid Mech. 168, 515. 
RALPH, M. E. & PEDLEY, T. J. 1986 Flow in a channel with a moving indentation. J .  Fluid Mech. 

190, 87. 
ROACHE, P. J. 1976 Computational Fluid Dynamics. Hermosa. 
ROBERTS, E. P. L. 1992 Unsteady flow and mixing in baffled channels. PhD thesis, Department of 

ROBERTS, E. P. L. 1994 A numerical and experimental study of transition processes in an obstructed 

ROBERTS, E. P. L. & MACKLEY, M. R. 1995 The simulation of stretch rates for the quantitative 

SOBEY, I. J.  1980 On flow through furrowed channels. Part 1 .  Calculated flow patterns. J .  Fluid 

SOBEY, 1. J. 1983 The occurrence of separation in oscillatory flow. J .  Fluid Mech. 134, 241. 
SOBEY, I. J. 1985 Observation of waves during oscillatory channel flow. J .  Fluid Mech. 151, 395. 
STEPANHOFF, K. D., SOBEY, I. J. & BELLHOUSE, B. J. 1980 On flow through furrowed channels. Part 

THOMPSON, J. M. T. & STEWART, H. B. 1986 Nonlinear Dynamics and Chaos. Wiley. 
WOLF, A,, SWIFT, J. B., SWINNEY, H. L. & VASTANO, J. 1985 Determining Liapunov exponents from 

E. P. L. Roberts and M .  R. Mackley 

Chemical Engineering, University of Cambridge. 

channel flow. J .  Fluid Mech. 260, 185. 

prediction and mapping of mixing within a channel flow. Chem. Engng Sci. 50, 3721. 

Mech. 96, 1. 

2. Observed flow patterns. J .  Fluid Mech. 96, 27. 

a time series. Physica 16D, 285. 


